
University of Massachusetts Dartmouth
Department of Electrical and Computer Engineering

ECE 160 – Grading Rubric

To give you an understanding of how your projects/labs will be graded, I distribute
this rubric. Please read this, and occasionally re-read it. There are 100's of points
lost on projects and labs because students do not pay any attention to various
parts of this rubric. The last two pages contain specific instructions for how points
are awarded and how points are taken away for most programs labs. Exceptions
will be noted in the problem handout.

NOTES ON TESTING/VERIFICATION

Generally, all of the programs you are required to write for this course have a
very tight specification. For most labs/projects, there are sample run(s)
provided. To insure a good grade, your code should at a minimum match the
sample run(s) as closely as possible. In addition to the sample test data, you
should test several additional inputs. A successful engineer knows how to pick
test data. The sample data that I supply is not an exhaustive list of possible
inputs...When I grade your program, I will try several additional data sets...you
should too.

RESUBMITS

Occasionally (rarely), I will indicate that you should fix a particular error and
resubmit a program. Unless invited, a resubmit is not allowed. Generally, I
only invite resubmits if it looks like there was an error introduced just prior to
submitting the program.

WHAT GETS SUBMITTED AND WHERE?

You should only submit the files specified in the handout (generally these are
.txt, .cpp and/or .h files, depending on the lab/project). All files should be
submitted in the M:\ECE-160\yourname folder. You should NOT create any
subfolders. Submitting extra files may result in loss of points. Submitting a
project in a subfolder is considered naming it wrong (resulting in loss of points).

NOTE: By default, Windows hides file extensions for known file types. I
suggest you disable this. On Windows 7, click on "Computer", then on the
menu, click "Tools", and "Folder Options". Click on the "View" tab. Under
"Advanced settings:", scroll down and uncheck the "Hide extensions for known
file types" option. Click "OK". At this point extensions are shown for all files.
NOTE: if clicking on "Computer" gives you a sub menu of drives, then right click
on "Computer", and select "Open". In Windows 10, in the search box, type
"Show or hide file extensions". Click on best match. In the File Explorer
Options dialog box, insure that "Hide extensions for known file types" is NOT
checked. Click OK.

USING scanf()

All input shown on a single line in the sample runs must be done with a
single scanf() statement. Input shown on multiple lines must be done with
multiple scanf() statements. While sometimes (in the VS2017
environment), you can put two pieces of input on one line, and have it read
by one scanf(), or vice-versa, this is not always the case. This will be
checked when grading; failure to do this will result in loss of points.

- 2 -

ON THE PLUS SIDE:

Correct submittal name .. 20%
Each project and lab has a specified name that must be used to
submit the file. This is generally given on the assignment and on the
syllabus in the form "projname.cpp", "labname.txt" or
"labname.cpp". The name you use must match the given name
exactly (pay attention to upper/lower case, etc). The quote marks
are not considered part of the name.

Required Certification .. 5%
Each project and lab submitted should include one of the following
statements.
A. // I, <name> certify that this is my own work and have
 // not collaborated with anyone else.
 OR
B. // I, <name> state that I collaborated with
 // <name1>,...,<namen> on this project or lab,
 // but still developed the details of my own code

Appropriate documentation (includes required certification; see above) 5%
At a minimum, the main function must have a header which includes
your name, the date, and a description of the program. Each variable
used in the main function must be described. Each and every
function must have a header which includes the name of the function,
a brief description, and a description of the “pre-conditions” (On
Entry), and “post-conditions" (On Exit). Each variable used in a
function must be described.

Appropriate looking code ... 10%
Appropriate looking code means code which (in my opinion) looks
like it is related to the given problem.

Successful compilation .. 10%
The code compiles without any fatal errors or warnings which prevent
the code from working.

Correct output .. 50%
Output is as specified in the problem statement. Incorrect output
results in lowering of score.

EXAMPLES:
• You write a bunch of code (with errors) which looks like you've been thinking

about the problem and hand in a correctly named program with OK
documentation, and the required certification...you would earn a score of 40
points.

• You write a bunch of code which looks like you've been thinking about the
problem (and it compiles) and hand in a correctly named program with OK
documentation, the required certification, and no output...you would earn a
score of 50 points.

• You hand in a perfect program with the wrong name...75 points
• You hand in a perfectly running program with no documentation and no

certification...90 points

- 3 -

ON THE MINUS SIDE:

Incorrect name for associated data file ... -10 points
Some labs/projects will require your program to read and/or write a
file. The name of the file will be specified in the handout. Your
program must use this exact file name.

Submission after due date ... -2n-1 points
Where n is the number of days late. i.e. a program that is one day
late looses 1 point; a program which is 4 days late looses 8 points.
A program is considered "submitted" when it is placed in your folder
on the M: drive. Any program handed in more than 1 week late
receives a grade of 3 (just as an indicator they were turned in).
Unless otherwise specified, projects are due on date specified by
11:59:59pm. A "day" is defined as a 24 hour period beginning at
midnight, and includes Saturdays, Sundays, and holidays. If the
server (M: drive) is down, the deadline will be extended. Given the
redundant nature of the network, this RARELY happens (maybe
once every three or four years). Any down time is logged, and the
system administrator sends an email to all ECE faculty.

Incorrect command structure .. -10 to -20 points
In most projects there will be some type of command interface. This
command interface is part of the specification, and must be followed
to avoid loss of credit. Making the program more "user friendly" will
not result in a higher score (it will likely lower your score). Following
the specification will earn you the maximum number of points. Any
"pausing" at the end of the code (a "press any key to continue"
followed by an input statement) will result in loss of 20 points.

Incorrect header files .. -30 points
This is a course emphasizing C, not C++. Use of the file <stdafx.h>
results in a lowering of score by 30 points.

Using "system()" commands ... -30 points
System commands are not part of C. They should not appear in your
program.

Unaligned output .. up to -20 points
Several projects require that your output be in tabular (table) format,
with right justified values, and or with decimal points aligned.

EXAMPLES:
• You hand in a perfect program...

o 1 day late: 99 (21-1= - 1); 2 days late: 98 (22-1= -2)
o 3 days late: 96 (23-1= - 4); 4 days late: 92 (24-1= -8)
o 5 days late: 84 (25-1= -16); 6 days late: 68 (26-1= -32)
o 7 days late: 36 (27-1= -64); 8 days late: 00 (28-1=-128)

• You hand in a program 3 days late, and the decimal points in your
output do not line up as the problem specifies...86 (-4 late, -10
output)

• You hand in a program which runs perfectly, but uses #include
<stdafx.h>...70 (-30 for using stdafx.h)

• You hand in a program which compiles, but several test cases
work incorrectly...60-80 (-20 to -40 depending on how many test
cases are incorrect)

