
University of Massachusetts Dartmouth
Department of Electrical and Computer Engineering

ECE 160 Name: dayofweek.cpp
Project 6 Due: See http://ece160.org

Write a program that, given a date (month, day, year) will display the corresponding
day of the week. The program should then ask for another date, and repeat the
process until a year of zero is entered.

Calculating a day for any given date is somewhat complicated, as Emperor
Augustus made changes to the calendar in 8AD, and Pope Gregory XIII eliminated
11 days in 1582 (adopted by Great Britain and America in 1752...Wednesday
September 2nd was followed by Thursday September 14th). The algorithm
discussed in this project will only work from 1753 onward.

The overall algorithm, given a mm, dd, and yyyy, is to find the number of days
between 01/01/0001 and mm/dd/yyyy (accounting for lost days mentioned above).
This number mod 7 gives a value between 0 and 6, where 0 represents Sunday,
1 represents Monday, and so on, with 6 representing Saturday.

The first step is to find the number of days (accounting for the changes to the
calendar above) between 01/01/0001 and 12/31/(yyyy-1). The formula is:

 y-1 y-1 y-1
 numdays = (y-1)*365 + ----- - ----- + -----
 4 100 400

The next step is to add the number of days in all of the full months in the current
year. For example if mm is 5, you would add 31 + 28 + 31 + 30 to numdays. For
this part, assume February always has 28 days.

Next, add dd to numdays. This is [almost] the total number of days between
01/01/0001 and mm/dd/yyyy entered.

There is one last refinement needed. If the current year is a leap year, and the
desired date is on or after March 1, you need to add 1 to numdays. A year is a leap
year if the year is evenly divisibly by four, unless the year is evenly divisible by
100, in which case it is not a leap year, unless the year is evenly divisible by 400,
in which case it is a leap year (yes, it sound crazy, but this is the way it is). There
is, in fact, another correction to be made at 2900 year intervals, but we'll ignore
that one. The following logical expression may be used to determine if the year is
a leap year.

 ((year%4==0) && (year%100!=0)) || (year % 400 ==0)
OR
 (!(year % 4) && (year % 100)) || !(year % 400)

The remainder (remember %) after dividing numdays by 7 gives you a daycode. The
day is determined by the daycode as follows:
 Day 0: Sunday Day 2: Tuesday Day 4: Thursday Day 6: Saturday
 Day 1: Monday Day 3: Wednesday Day 5: Friday

Initially test your program with the following dates:
 February 28, 1900 March 1, 1900 February 28, 1955
 March 1, 1955 February 28, 1996 March 1, 1996
 February 28, 2000 March 1, 2000 January 1, 1997
 December 31, 1997 September 24, 2007 September 26, 2007

- 2 -

In addition to the values above and below, you should test your program for several
values (especially around Feb 28/29/Mar 1, and Dec 31/Jan 1). A handy resource
may be found at http://www.timeanddate.com/calendar/

A sample run of the program might look as follows (user input underlined):

Date (m d y): 2 28 1900
 2/28/1900 => Wednesday

Date (m d y): 3 1 1900
 3/ 1/1900 => Thursday

Date (m d y): 2 28 1955
 2/28/1955 => Monday

Date (m d y): 3 1 1955
 3/ 1/1955 => Tuesday

Date (m d y): 2 28 1996
 2/28/1996 => Wednesday

Date (m d y): 3 1 1996
 3/ 1/1996 => Friday

Date (m d y): 2 28 2000
 2/28/2000 => Monday

Date (m d y): 3 1 2000
 3/ 1/2000 => Wednesday

Date (m d y): 1 1 1997
 1/ 1/1997 => Wednesday

Date (m d y): 12 31 1997
12/31/1997 => Wednesday

Date (m d y): 9 23 2013
 9/23/2013 => Monday

Date (m d y): 2 29 2020
 2/29/2020 => Saturday

Date (m d y): 3 1 2020
 3/ 1/2020 => Sunday

Date (m d y): 0 0 0
Press any key to continue . . .

Remember to include the required certification found at the end of the Grading
Rubric. Also, check the rubric before handing in your project to insure you haven't
made any obvious errors that result in loss of points. Remember the cases above
are not an exhaustive list. I will try several other values...you should too.

- 3 -

Hints, requirements, and recommendations:

You must create and use at least three functions, as detailed below:

The first function should have a prototype:

 int getndim(int m, int y);

This function should return the number of days in the specified month (m) of the
specified year (y).

The second function should have a prototype:

 int getdaycode(int m, int d, int y);

This function should calculate the daycode value discussed on page 1. This
function may (should) make use of the getndim() function.

A third function to consider is a function with the prototype:

 void printdayname(int day);

This function will simply print the name of a given day. If day is 0, then Sunday
is printed; 1 prints Monday, and so on…6 prints Saturday.

