
University of Massachusetts Dartmouth
Department of Electrical and Computer Engineering

ECE 160 name: modefile.cpp
Prj 10 – Find modes of data from file Due: see http://ece160.org

Write a program which will read from the file “numbers.txt”. The file will contain
one or more data sets (each line of the file contains exactly one value). A data set
is defined by an integer indicating the number of values in the data set. Following
the dataset will either be a 0 (zero) indicating no more data sets or a value
containing the number of values in the next set. A dataset consists of at most 100
value.

After a dataset is read, the program should then print out the original values and
the values of the dataset sorted in ascending order SIDE BY SIDE, with the
columns properly labeled (see sample run).

Lastly, the mode (or count) of each value should be output. See the sample run
below for examples.

To add a textfile to a project:
 Project/Add New Item/Utility/Textfile/type name, and click “Add”
This will put the file in the proper place, so that just a: fopen(“filename.txt”, “rt”) with
no path specified will find the file. Specifying a file path will result in loss of points.

File: numbers.txt

14  number of values in first dataset
50
60
50
60
10
10
70
80
50
50
50
10
50
6
4  number of values in next dataset
25
25
25
25
8  number of values in next dataset
1
3
3
3
3
3
3
3
5  number of values in next dataset
3
3
3
3
3
0  no more datasets

- 2 -

Output should be:

 Original Sorted
 50 6
 60 10
 50 10
 60 10
 10 50
 10 50
 70 50
 80 50
 50 50
 50 50
 50 60
 10 60
 50 70
 6 80

 Value Count
 6 - 1
 10 - 3
 50 - 6
 60 - 2
 70 - 1
 80 - 1

 Original Sorted
 25 25
 25 25
 25 25
 25 25

 Value Count
 25 - 4

 Original Sorted
 1 1
 3 3
 3 3
 3 3
 3 3
 3 3
 3 3
 3 3

 Value Count
 1 - 1
 3 - 7

 Original Sorted
 3 3
 3 3
 3 3
 3 3
 5 5

 Value Count
 3 - 4
 5 - 1

- 3 -

Hints

To print out (to a file) the original and sorted side by side, it is necessary to create
another array; for example you might have an orig[] and sort[] array. Copy each
element of the orig[] array to the sort[] array. You need to copy the elements one
at a time in a loop.

To determine a count for each of the values, you need to do some processing on
the sorted array. Pseudo code follows:

 current_count = 1
 current_val = sort[0]
 for (i=1; i< number_of_values; i++)
 if (sort[i] != current_val)
 output(current_val, current_count)
 current_val = sort[i]
 current_count = 1
 else
 current_count++
 output(current_val, current_count)

Obviously, you need to have a sorted array. If you have not yet written/tested a
bubble sort routine, now would be a good time.

Again, it is strongly suggest that after you write each function, you thoroughly test
it before integrating all the functions.

